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Abnormal social behavior, including both hypo- and hypersociability, is often observed

in neurodevelopmental disorders such as autism spectrum disorders. However, the

mechanisms associated with these two distinct social behavior abnormalities remain

unknown. Postsynaptic density protein-95 (PSD-95) is a highly abundant scaffolding

protein in the excitatory synapses and an essential regulator of synaptic maturation

by binding to NMDA and AMPA receptors. The DLG4 gene encodes PSD-95, and

it is a risk gene for hypersocial behavior. Interestingly, PSD-95 knockout mice exhibit

hyposociability during adolescence but hypersociability in adulthood. The adolescent

hyposociability is accompanied with an NMDAR hyperfunction in the medial prefrontal

cortex (mPFC), an essential part of the social brain for control of sociability. Thematuration

of mPFC development is delayed until young adults. However, how PSD-95 deficiency

affects the functional maturation of mPFC and its connection with other social brain

regions remains uncharacterized. It is especially unknown how PSD-95 knockout drives

the switch of social behavior from hypo- to hyper-sociability during adolescent-to-adult

development. We propose an NMDAR-dependent developmental switch of hypo- to

hyper-sociability. PSD-95 deficiency disrupts NMDAR-mediated synaptic connectivity of

mPFC and social brain during development in an age- and pathway-specific manner. By

utilizing the PSD-95 deficiency mouse, the mechanisms contributing to both hypo- and

hyper-sociability can be studied in the same model. This will allow us to assess both

local and long-range connectivity of mPFC and examine how they are involved in the

distinct impairments in social behavior and how changes in these connections may

mature over time.
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Social behavior is the ability to properly communicate with others between conspecifics
in both humans and animals. This function relies on coordinated processes between
nodes of the “social brain” that includes the prefrontal cortex (PFC), amygdala, nucleus
accumbens (NAc), anterior insula, anterior cingulate cortex, hippocampus, and temporal
sulcus (Blakemore, 2008; Sandi and Haller, 2015; Porcelli et al., 2019; Kingsbury and
Hong, 2020). While most have a normal social life, some experience social deficits such
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as hyposociability or hypersociability that are commonly seen in
various neurodevelopmental and psychiatric disorders, especially
autism spectrum disorders (ASD) (Haas and Reiss, 2012).

However, most of the studies focus on social impairments
associated with hyposociability in adults. Recent studies
highlighted hypersociability in both patients with Williams
Syndrome (Porter et al., 2007; Jabbi et al., 2012) and animal
models (Osborne, 2010; Barak and Feng, 2016; Barak et al., 2019;
Toth, 2019). The mechanisms associated with social deficits
across the spectrum remain elusive. It is especially unknown
when and how hypersociability evolves during development and
whether hypersociability is directly related to or derived from
hyposociability that is often more frequently observed in various
psychiatric disorders.

Although the precise functions of sociability-related genetic
and epigenetic effects are not understood, it was proposed
to converge on two neuronal processes that regulate social
behavior. One is the ability of the amygdala to discriminate
between fear-inducing and friendly social clues and to produce an
appropriate behavioral response. The other is the dopaminergic
reward/aversion system that assesses the salience of social
situations and initiates approach (social reward) or avoidance
(social aversion) behavior (Toth, 2019). However, a common
finding focuses on the dysfunctional prefrontal cortex and its
connectivity (Porter et al., 2007; Jabbi et al., 2012; Barak and Feng,
2016; Barak et al., 2019).

The dysfunctional PFC assumption is also supported by the
deletion of the DLG4 gene, which encodes postsynaptic density
protein-95 (PSD-95) and is identified as a high-risk gene for
hypersociability (Toth, 2019). As a member of the membrane-
associated guanylate kinase (MAGUK) family (Cheng et al.,
2006), PSD-95 is a core component of the PSD. Based on
the quantitative mass spectroscopic assay, PSD-95 is about 6-
fold more abundant than PSD-93, 8-fold more than SAP102,
and 40-fold more than SAP-97 in PSDs of the adult rat
forebrain (Cheng et al., 2006). Therefore, PSD-95 is the most
abundant scaffolding protein in the excitatory glutamatergic
synapses in the central nervous system (El-Husseini et al.,
2000; Chen et al., 2011, 2015; Sheng and Kim, 2011; Fromer
et al., 2014; Purcell et al., 2014). PSD-95 functions to facilitate
synaptic maturation by recruiting/trafficking both N-methyl-
D-aspartic acid receptors (NMDARs) and α-amino-3-hydroxy-
5-methyl-4-isox-azoleproprionic acid receptors (AMPARs) to
the postsynaptic membrane during neurodevelopment (Frank
et al., 2016). Specifically, PDZ domains located at the C-
terminus of PSD-95 bind directly with NMDAR subunits,
GluN2A and GluN2B (Kornau et al., 1995), and stargazin,
which adheres to AMPAR subunits (Schnell et al., 2002; Zhang
et al., 2013). Therefore, it is plausible that PSD-95 dysfunction
would lead to aberrant synaptic maturation and formation due
to changes in NMDAR and AMPAR presence and activity.
Indeed, disruption of PSD-95 expression is highly associated
with synaptic dysfunction in neurodevelopmental disorders
such as schizophrenia (Fromer et al., 2014) and ASD (Xing
et al., 2016; Coley and Gao, 2018). A study reported that
PSD-95 deficiency enhanced long-term potentiation but had
limited effects on synaptic expression and function in the
hippocampal CA1 pyramidal neurons (Migaud et al., 1998).

However, we and others have found that the effects of PSD-
95 deficiency on synaptic function are age- and brain region-
specific (Béïque et al., 2006; Feyder et al., 2010; Winkler
et al., 2018; Coley and Gao, 2019). Specifically, we recently
reported that during adolescent development, mice with targeted
deletion of the DLG gene (PSD-95 knockout, KO) exhibited
a significant increase in NMDA-mediated excitatory synaptic
currents (EPSCs) but limited effects on AMPA-EPSCs in the
mPFC neurons (Coley and Gao, 2019). The question is how the
synaptic changes in the mPFC induced by PSD-95 KO would
affect the function of mPFC and its connections with other brain
regions within and outside of the social brain circuit (Barak and
Feng, 2016). Behaviorally, adolescent PSD-95 KO mice exhibited
hyposociability and impaired social novelty/memory (Coley and
Gao, 2019), whereas adult mice displayed hypersociability despite a
slight slow in locomotion (Feyder et al., 2010; Winkler et al., 2018).
This phenotypic switch in sociability is fascinating. It suggests
that the age-dependent and brain region-specific alterations in
synaptic function induced by PSD-95 KO might be responsible
for the behavioral switch from hypo- to hyper-sociability during
adolescence to adulthood development.

It is worth noting that the mediodorsal thalamus (MD)
is part of the limbic systems for social and emotional
behaviors, but its role in the regulation of these behaviors is
oddly understudied. We recently reported that the MD-mPFC
pathway critically modulated social behaviors (Ferguson and
Gao, 2018). Specifically, acute inhibition of the MD activity
increased excitation/inhibition (E/I) balance in mPFC neurons
and impaired social interaction in a three-chamber task. In
adolescence, we also found that global PSD-95 KO results in
an increase in evoked NMDAR-mediated excitatory postsynaptic
currents (EPSCs) in the mouse prefrontal neurons and the
KO mice also exhibited hyposociability. Together these findings
suggest that mechanisms that increase E/I balance in both
adulthood and adolescence can induce hyposociability. Given
that increased inhibition of the mPFC does not increase
sociability (Yizhar et al., 2011; Ferguson and Gao, 2018), we
predict that a reduced NMDAR transmission, instead of an
altered E/I balance, may contribute to the hypersociability. This
assumption, however, remains to be tested.

Still, how does a postsynaptic scaffold protein like PSD-95
affect presynaptic function of excitatory inputs to the mPFC from
the MD or other social brain regions? PSD-95 is essential in
coupling the postsynaptic NMDARs to pathways that control
bidirectional synaptic plasticity and learning (Migaud et al.,
1998). Moreover, PSD-95 also enhances the maturation of
presynaptic terminals via various mechanisms, including the
enhanced size of axon terminals (El-Husseini et al., 2000),
retrograde regulation of presynaptic b-neurexin via PSD-95-
neuroligin interaction (Conroy et al., 2007; Futai et al., 2007),
and synaptic scaling (Sun and Turrigiano, 2011). The presynaptic
effect is activity- and NMDAR-dependent (Pratt et al., 2003;
Südhof, 2018), and this effect could explain why the PSD-
95 knockout mouse has augmented paired-pulse facilitation
(Migaud et al., 1998). However, it is also possible that the
presynaptic role is a secondary effect of postsynaptic maturation.
Indeed, we recently reported that PSD-95 deficiency results
in a significant increase in synaptic inhibition and thus a
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dramatic shift in the excitatory-to-inhibitory balance in the
prefrontal neurons via upregulation and trafficking of neuroligin-
2 and reduced GSK3β activity through tyr-216 phosphorylation
(McEachern et al., 2020).

The mPFC exhibits a distinct prolonged postnatal maturation
until young adulthood compared with other cortical and
subcortical regions (Monaco et al., 2015). The dysregulation of
mPFC development is known to contribute to the cognitive
and social deficits observed in ASD (Walker et al., 2017; Coley
and Gao, 2018). Especially, abnormal social approach in the
Williams Syndrome is attributed to frontal lobe dysfunction
(Porter et al., 2007). These findings raise a critical question of
how PSD-95 deficiency during development induces prefrontal
circuit and social behavior changes, i.e., the proposed aberrant
short- (prefrontal intracortical) and long-range (such as MD and
others) connections (Haas and Reiss, 2012), and consequently,
social behavior during development. Particularly, despite the
importance of PSD-95 in synaptic function and the notorious
impairment of synaptic dysconnectivity seen in both SCZ and
ASD (Tsatsanis et al., 2003; Nair et al., 2013; Buchmann et al.,
2014), it remains unknown whether PSD-95 deficiency would
also affect synaptic function and connectivity in the mPFC.
NMDA receptors are essential for the social brain (Ferri et al.,
2020) and social behavior development in rodents (Zoicas and
Kornhuber, 2019). Activation of NMDARs regulates sociability
(Burket et al., 2015), and NMDAR dysfunction is a prominent
pathophysiological feature in ASD (Won et al., 2012; Coley
and Gao, 2018; Chung et al., 2019). A laminar- and pathway-
specific expression and development of NMDARs in different
mPFC connections, as reported in the MD-mPFC pathway
(Miller et al., 2017), are likely the targets of PSD-95 deletion.
In particular, normally there are GluN2B-to-GluN2A subunit
switches in many brain regions during postnatal development,
but this process is prolonged in the mPFC (Monaco et al., 2015).
This natural NMDAR2 subunit switch represents the maturation
of development that is related to associative learning (Dumas,
2005). In contrast, PSD-95 KO resulted in an increase in GluN1
and GluN2B expression in the mPFC, and the predominant
NMDARs were thus dominated with the expression of GluN2B-
NMDARs that have a higher conductance and thereby increased
NMDA-EPSCs and NMDA/AMPA ratio (Coley and Gao, 2019).
Such a change in NMDAR composition in PSD-95 KO neurons
is a reversal to an immature state of the synapse and most
likely is the root cause behind the delayed maturation of
the prefrontal circuitry and its aberrant connectivity, as we
proposed here.

Therefore, utilizing PSD-95 deficient mouse models
(heterozygous PSD-95+/− and homozygous PSD-95−/−) to
explore the effects on both local excitatory and long-range
connectivity in the mPFC and their roles in social behavior
during development will provide a better understanding of how
social behavior evolves from hypo- to hyper-sociability. To our
knowledge, most developmental disorders exhibit either hypo-
or hyper-sociability. Even in animal models for ASD, social
behavior is often tested in adulthood, leaving the question of
developmental alteration of social behavior uncharacterized.
Therefore, the developmental phenotypic switch is unique
and PSD-95 deficient mouse model offers a specific template

to studying mechanisms that underly both hypo and hyper
sociability in one model. This can be achieved by using a
combination of physiological and optogenetic techniques, as well
as behavioral tasks, to test this hypothesis.

There are also several remaining questions to further
understand regarding the role of PSD-95 in regulating synaptic
function in the PFC. First, PSD-95 family MAGUKs are
essential for anchoring AMPA and NMDA receptor complexes
at the postsynaptic density (Chen et al., 2015). However, how
MAGUKs underlie synaptic strength is not well understood.
A recent study explored the structural and functional roles of
MAGUKs at hippocampal excitatory synapses by simultaneously
knocking down PSD-95, PSD-93, and SAP102 and combining
electrophysiology and transmission electron microscopic
tomography imaging to analyze the resulting changes (Chen
et al., 2015). Acute MAGUK knockdown significantly reduces
synaptic transmission mediated by AMPARs and NMDARs but
leads to a significant rise in the number of silent synapses (Chen
et al., 2015). This change in silent synapses, which contains
postsynaptic membrane with NMDARs but no AMPARs, is
consistent with the increased GluN1 and GluN2B expression and
NMDAR-mediated currents in PSD-95 KOmice (Coley and Gao,
2019). Moreover, NMDA receptors are selectively partitioned
into complexes and tripartite GluN2B, PSD-93, and PSD-95
supercomplexes during synaptic maturation (Frank et al., 2016).
Specifically, NMDAR supercomplexes are assembled late in
postnatal development and are triggered by synapse maturation
involving epigenetic and activity-dependent mechanisms (Frank
et al., 2016). However, the role of these supercomplexes, how
PSD-95 KO affects these supercomplexes, and their connection
to aberrant social behavior remain to be determined.

Nevertheless, because PSD-MAGUKs share a common
domain structure, including three PDZ (PDZ1/2/3) domains in
their N-terminus, ligand binding-deficient PSD-95 knockin (KI)
mice showed decreased accumulation of mutant PSD-95, PSD-
93, and AMPA receptor subunits in the PSD fraction of the
hippocampus (Nagura et al., 2012). As expected, PSD-95 has
an age- and subregion-dependent role in regulating synaptic
function and plasticity. In the hippocampal CA1 region of
young KI mice, basal synaptic efficacy was reduced, and LTP
was enhanced with intact LTD. In contrast, in adult KI mice,
there was no significant change in the magnitude of LTP in
CA1, but robustly enhanced LTP was induced at the medial
perforant path-dentate gyrus synapses (Nagura et al., 2012).
Adult KI mice showed markedly abnormal anxiety-like behavior,
impaired spatial reference and working memory, and impaired
remote memory and pattern separation in the fear conditioning
test. Thus, PSD-95 controls the synaptic clustering of PSD-
MAGUKs and glutamatergic receptors, which is essential in
regulating hippocampal synaptic transmission, plasticity, and
hippocampus-dependent behavior (Nagura et al., 2012). This is in
agreement with a previous report that social isolation produced
anxiety-like behaviors and changed PSD-95 levels in a brain
region-specific manner, i.e., PSD-95 levels were elevated in the
hippocampus and amygdala but reduced in the frontal cortex
after social isolation (Zhang et al., 2012).

An arguable notion is that a global KO instead of region-
specific deletion might not be ideal to understand the circuit
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dysfunction, and analysis of afferent-specific pathways in the
context of such global PSD-95 deficiency may not seem to
be useful. However, a recent study indicates that conditional
SAP-97 KO in the hippocampus exhibited only subtle male-
specific cognitive deficit and female-specific motor deficit, while
other behaviors were mostly unaffected, including social behavior
(Gupta et al., 2018). It is likely that a global connectivity
problem instead of change in a single region is required for
our proposed social behavioral changes in PSD-95 KO mice.
We predict that PSD-95 KO induces increased silent synapses
in prefrontal neurons during the unique prolonged postnatal
development (Coley and Gao, 2019). This reversal of cortical
maturation results in an aberrant prefrontal circuit and long-
range disconnection with other brain regions, which in turn,
induce behavioral changes in an age-dependent manner.

However, this assumption remains to be tested and/or
challenged because previous studies reported different effects of
loss of PSD proteins on synaptic AMPARs and NMDARs and
synaptic plasticity in different brain regions (Elias et al., 2006;
Carlisle et al., 2008; Krüger et al., 2013). Specifically, PSD-95 and
PSD-93 have opposing roles in the maturation of silent synapses
in the visual cortex, hippocampus, and PFC (Favaro et al., 2018).
While PSD-95 promotes the maturation of silent synapses, PSD-
93 acts as a brake and slows the process (Favaro et al., 2018).
Because of this differential regulation, the fraction of silent
synapses declines faster with a different developmental trejactory,
and a critical period of visual cortex development closes too early
in mice lacking PSD-93. Consequently, visual acuity appears not
to be affected in mice that lack either PSD-93 or PSD-95, but
is severely reduced in mice with deficiency of both proteins.
Proper orientation discrimination in adult mice also requires
both PSD-93 and PSD-95 (Favaro et al., 2018). These results
indicate that both PSD-95 and PSD-93 are mutually dependent
and required for balanced functions that are crucial for normal
development of synapses and optimal brain function. Indeed,
Levy and Nicoll demonstrated an age-dependent requirement of
MAGUKs in controlling synaptic strength that corresponds to a
period of heightened plasticity in pre-adolescent rats and shows
the importance of temporally controlled manipulations (Levy
and Nicoll, 2017).

Another question is whether the shift in behavioral
phenotypes with age in the PSD-95 KO mice is attributable
to the distinct downstream signaling pathways and/or the
upstream NMDAR-mediated transmission defect. This is indeed
an interesting question that deserves additional investigations.
Further, constitutive KO of PSD-95 will not only disrupt
NMDAR function, but such deficiency even in heterozygotes
will also likely induce homeostatic changes in synapse function
(Keck et al., 2017). These changes could be maladaptive and
result in synaptic dysfunction and circuit aberration that are
associated with other family members of the MAGUKs. Indeed,
there is robust hypersocial behavior in the dyadic interaction
test in both adult PSD-95+/− males and females, suggesting
hypersocial behavior and biological redundancy in mice with
reduced expression of PSD-95 or PSD-93 (Winkler et al., 2018).
Additionally, PSD-93 homozygous (but not heterozygous)
KO mice displayed similar prominent hypersocial behavior
comparable to that observed in PSD-95+/− mice, despite a

more severe motor phenotype. There was also increased PSD-93
protein expression in hippocampal synapse of PSD-95+/− mice,
whereas the changes in the mPFC and other regions were not
examined (Winkler et al., 2018). Consistently, DLG2 (also known
as PSD-93 or chapsyn-110) deficient in mice also led to reduced
sociability and increased repetitive behavior accompanied by
aberrant synaptic transmission in the dorsal striatum (Yoo et al.,
2020). These data further suggest that both PSD-95 and PSD-93
are involved in processing social stimuli and social behavior
control, indicating their functional redundancy (Winkler et al.,
2018). PSD-95 as a key molecule in synapses plays a critical
role in regulating the subunit composition of NMDARs and the
level of AMPARs and its activity-dependent change at synaptic
sites via interactions with PDZ domains (Migaud et al., 1998;
Béïque et al., 2006; Elias et al., 2006, 2008; Carlisle et al., 2008;
Sun and Turrigiano, 2011; Xu, 2011). However, due to functional
redundancy among PSD-MAGUKs and their multiple protein-
interacting domain structure, the specific roles of individual
PSD-MAGUKs during development in vivo remains unclear.
Future studies will focus on how these diversities are achieved
and to what extent PSD-MAGUKs and their components,
individually or jointly, contribute to orchestrating the signaling
cascades and synaptic development for the various types of
synaptic plasticity at different glutamatergic synapses (Xu, 2011).

With all these considerations, what we proposed here is
to study an age-dependent and circuit-specific social behavior
switch from hypo- to hyper-sociability using the PSD-95
mouse model. This perspective plan is the first attempt
to characterize the effects of PSD-95 deficiency specifically
on mPFC synaptic function by examining glutamatergic
transmission from thalamocortical projections in response to
PSD-95 deficiency compared to afferents from other social
brain regions such as the hippocampus and amygdala. This
approach will isolate afferent specific fibers that are critical for
the maturation of the mPFC. While previous studies showed that
PSD-95 knockdown altered NMDAR and AMPAR expression
and function in cultured hippocampal neurons, oddly, the
effects of PSD-95 on both local and long-range connectivity
of prefrontal neurons have never been characterized. Using
the unique PSD-95+/− and PSD-95−/− mice combined with
morphological, physiological, and optogenetic techniques, this
study will address an intriguing hypothesis of how NMDAR-
mediated synaptic function and connection in the mPFC is
associated with the sociability switch from hypo- to hyper-
social status during the adolescent development. These results
will undoubtedly provide novel insights into the understanding
of how PSD-95 deficiency affects PFC-associated regulation of
social behavior across development and its potential implications
in neuropsychiatric disorders such as the ASD.
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